

GTP chipbreaker

Reduce cycle time and costs with integrated machining solutions

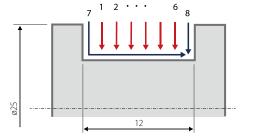
Grooving and traversing possible
Stable chip control and superior surface finish

KTKF for Small Part Machining Applications

GTP Chipbreaker

Reduce Cycle Time with Grooving and Traversing Capabilities

1


Grooving and Traversing Available

Cutting time comparison (Internal Evaluation)

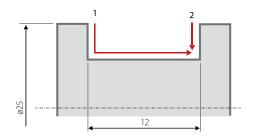
Competitor A

Multiple Grooves and a Finishing Pass

Workpiece: S45C (ø25)

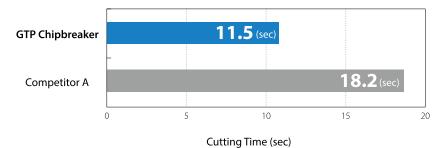
Cutting Conditions: Multiple Grooves

Vc=100m/min ap=3.5mm,f=0.10mm/rev


Cutting Conditions: Finishing

Vc=100m/min ap=0.5mm, f=0.05mm/rev

TKF12R200-GTP


Grooving and Traversing

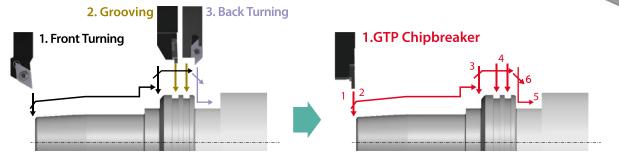
Workpiece: S45C (ø25)

Cutting Conditions: Grooving and Traversing

Vc=100m/min ap=4mm, f=0.05mm/rev

GTP chipbreaker required fewer machining paths than Competitor A.

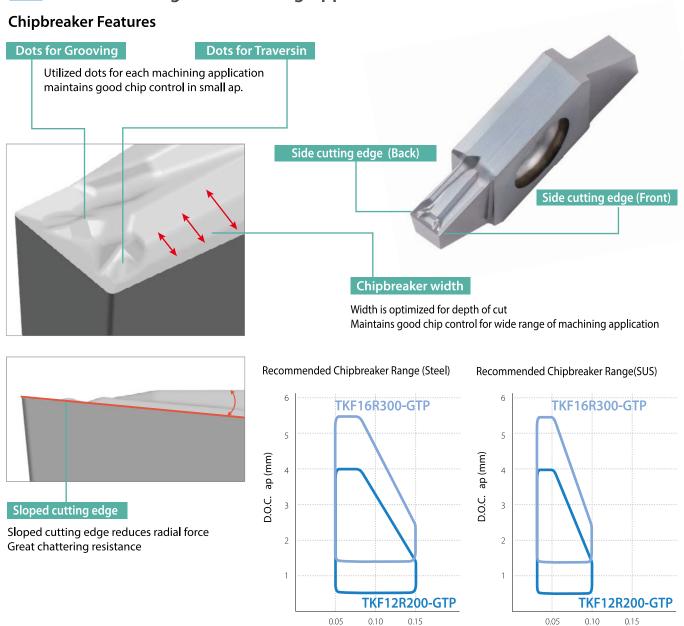
Workpiece example

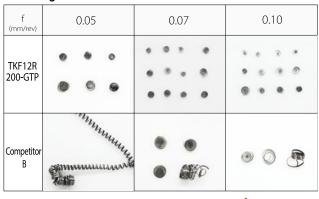

40%
Cutting Time Reduction

Solution to Integrate Tools

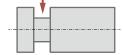
A GTP Chipbreaker provides integration of front turning, grooving and back turning.

Conventional Tools


GTP Chipbreaker

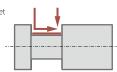

^{*}Maximum grooving width and cutting depth. (Max.grooving width/Max. D.O.C.) TKF12R200-GTP(2.0mm/4.0mm), TKF16R300-GTP(3.0mm/5.5mm)

2


Stable Chip Control and Superior Surface Finish Quality for Wide Range of Machining Applications

Chip control comparison (Internal evaluation) Grooving

Cutting Conditions: Vc=100m/min, ap=4mm, Wet Workpiece: S45C (ø25)



Surface finish comparison (Internal evaluation) Traversing

Feed fz (mm/rev)

	TKF12R200-GTP	Competitor C					
	way to de point of the amount and	EAST ASSESSMENT OF THE PARTY OF					
Surface Finish	Rz= 3.21μm	Tear Rz= 4.11μm					

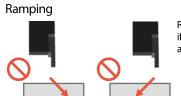
 $\label{eq:cutting conditions: Vc=100m/min, ap=4mm, f=0.05mm/rev, Wet \\ Workpiece: S45C (Ø25)$

Feed fz (mm/rev)

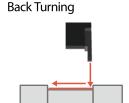
GTP Chipbreaker showed superior chip control and surface finish when compared to Competitor C.

Standard Stock Description

Shape		Description	Dimensions (mm)				Angle	MEGACOAT NANO PLUS	MEGACOAT NANO	Applicable		
		Description	CW	CDX	RE	W1	S	D1	PSIRR	PR1725	PR1535	Toolholders
7	SI PSIRR	TKF12R200-GTP	2.0	4.3	0.08	3.0	8.7	5.0	0°	•	•	KTKFR12
	10P-	TKF16R300-GTP	3.0	5.8	0.08	4.0	9.5	5.0	0°	•	•	KTKFR16


For more details on applicable toolholders, see the KYOCERA general product catalog.

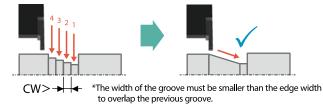
: Standard Stock

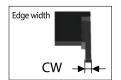

Recommended Cutting Conditions ★:1st Recommendation; ☆:2nd Recommendation

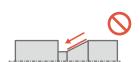
Workpiece -		Recommended Insert Grade						
		MEGACOAT	NANO PLUS	MEGACOAT NANO				
		PR1	725	PR1535				
		Grooving	Traversing	Grooving	Traversing			
Carbon Steel, Alloy Steel (S45C、SCM435, etc.)	Cutting Speed Vc:m/min	★ 60 ~ 200		☆ 60 ~ 150				
	Feed f (mm/rev)	0.03 ~ 0.07	0.05 ~ 0.15	0.03 ~ 0.07	0.05 ~ 0.15			
Stainless Steel (SUS304, etc.)	Cutting Speed Vc:m/min	☆ 60 ~ 150		★ 60 ~ 130				
	Feed f (mm/rev)	0.02 ~ 0.05	0.03 ~ 0.10	0.02 ~ 0.05	0.03 ~ 0.10			

Caution for machining

Ramping is not recommended if the workpiece is not pre-machined as shown in the right figures.




When back turning is used for finishing, make sure that the side cutting edge (back) of the tool is within 1mm.



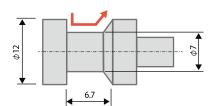
Tips for Ramping

Step grooving is required before ramping. (Refer to the figure below)

Case Studies

Spool Valves SCM415 **GTP Chipbreaker**

Vc=120m/min, ap=2.5mm f=0.02mm/rev, Wet TKF12R200-GTP (PR1535)


Showed good chip control without chip entanglement. Further machining possible.

Conventional Tools:A

Vc=120m/min, ap=2.3mm: grooving 0.2mm: Finishing f=0.02mm/rev, Wet

Chip entanglement occurred during traversing (finishing).

GTP chipbreaker reduces the amount of tool paths and improved chip control.

(User evaluation)