THE NEW VALUE FRONTIER

Negative wiper insert

WE chipbreaker WF chipbreaker

WE/WF chipbreaker

High productivity with newly designed wiper edge geometry

Finishing-Medium

WE chipbreaker (For high maching efficiency) High productivity by reducing cutting time with higher feed machining Stable chip control in a wide range of applications

Finishing

WF chipbreaker (For excellent surface roughness) High productivity with smooth chip control in finishing operations Excellent surface finish by reducing adhesion

Wiper insert (Finishing-Medium)

WE chipbreaker

High productivity by reducing cutting time with higher feed machining. Stable chip control in a wide range of applications

3 times higher feed rate than standard inserts with excellent surface finish

Surface finish comparison (In-house evaluation)

Cutting conditions: Vc = 250 m/min, ap = 0.3 mm, f = 0.1 - 0.7 mm/rev, wet CNMG120408 type Workpiece: 34CrMo4

Reduce the number of machining paths from 2 paths to 1 path

Conventional machining process Cutting Time (2 paths): 22.1 sec Path 1 : Conventional tool (Non-wiper insert)

Vc = 200 m/min, ap = 1.5 mm, f = 0.25 mm/rev, wet, CNMG120408 type

Path 2 : Conventional tool (Wiper insert)

 $Vc=200\ m/min,\ ap=0.5\ mm,\ f=0.4\ mm/rev,\ wet,\ CNMG120408\ type$ Workpiece: 15CrMo4 (Size of material ø 40 \times 150 L, cutting length 100 mm)

Recommended machining process Cutting time (1 path): 8.5 sec Pass 1 : WE chipbreaker (Wiper insert)

Vc = 200 m/min, ap = 2.0 mm, f = 0.4 mm/rev, Wet, CNMG120408 type Workpiece: 15CrMo4 (Size of material ø 40 \times 150 L, cutting length 100 mm)

Cutting time comparison (In-house evaluation)

Stable cutting at 0.7 mm/rev feed rate

Fracture resistance comparison (In-house evaluation)

Cutting conditions: Vc = 150 m/min, ap = 1.0 mm, f = 0.7 mm/rev, wet CNMG120408 type (Insert grade: P25 grade), fracture resistance comparison (3 tests) Workpiece: 42CrMo4 (4 grooves in workpiece)

Stable chip control in a wide range of applications

Chip control comparison (In-house evaluation)

4

5

Cutting Conditions: Vc= 200 m/min, ap = 0.5 - 3.0 mm, f = 0.1 - 0.7 mm/rev, wet, CNMG120408 type, workpiece: 15CrMo4

Excellent surface finish

Excellent surface finish during high feed machining

Surface finish comparison (In-house evaluation)

Cutting conditions: Vc = 250 m/min, ap = 0.3 mm, f = 0.1 - 0.7 mm/rev, wet CNMG120408 type Workpiece: 34CrMo4

6 Long tool life

WE chipbreaker reduces cutting time by increasing feed rate and extending tool life by 3 times

Total cutting length comparision (In-house evaluation)

2

Wiper insert (Finishing)

WF chipbreaker

Smooth chip control improves cutting performance during finishing operations. Excellent surface finish by reducing adhesion

1 Exce

Excellent chip control

WF chipbreaker provides excellent chip control during high feed machining

f
(mm/rev)0.10.20.30.40.5WF chipbreaker
(Wiper edge)Image: Conventional E
(No wiper)Image: Conventional E
(No wiper)Image: Conventional E
(Wiper edge)Image: Conventional E<

Chip control comparison (In-house evaluation)

Cutting conditions: Vc = 200 m/min, ap = 0.5 mm, f = 0.1 - 0.5 mm/rev, wet CNMG120408 type Workpiece: 15CrMo4

2

Excellent surface finish

Prevents tool deflection by reducing radial forces

Cutting force comparison (In-house evaluation)

Cutting conditions: Vc = 200 m/min, ap = 0.5 mm, f = 0.3 mm/rev, wet CNMG120408 type Workpiece: 15CrMo4

WF chipbreaker reduces tearing of the finished surface by controlling adhesion with the newly designed wiper edge

Surface finish comparison (In-house evaluation)

Cutting conditions: Vc = 200 m/min, ap = 0.3 mm, f = 0.1 - 0.2 mm/rev, wet CNMG120408 type Workpiece: 15CrMo4

Excellent surface finish during 2 times higher feed rate machining 3 (Cutting time 1/2)

Surface finish comparison (In-house evaluation)

CNMG120408 type Workpiece: 34CrMo4

4 Long tool life

WF chipbreaker reduces cutting time by increasing feed fate and extends tool life by 2 times

Total cutting length comparision (In-house evaluation)

Caution (Finished edge line)

Radius Cutting (Differences from Non-wiper insert)

Cut-off and cut-away will occur between radius machining and straight machining There is a limit to the use of a wiper insert when there is an R parameter symbol Please refer to the list on the right for finished dimensions

Application	Caution
External Facing	For D type and T type inserts, expected performance may vary depending on toolholders Please check the applicable toolholder
Up Facing Ramping	For D type and T type inserts, Z-direction program corrections are required
凹•凸	Do not use wiper insert if a precise R shape is needed

Unit: mm

D Type insert

Nominal corner R	Finished dimension
0.4	R0.4 +0.4
0.8	R0.8 ±0.2
1.2	R1.2 +0.3 -0.4

T Type insert

r type mbere	Unit. Init
Nominal corner R	Finished dimension
0.4	R0.4 +0.4
0.8	R0.8 ±0.2
1.2	R1.2 +0 -0.4

There is no limit for using CNMG/WNMG type inserts

CNMG/WNMG type inserts meet ISO standard

Cutting edge offsets of negative wiper insert

		Cutting	edge offs	ets (mm)						For D1	type an	id T typ	e inser	ts, cutti	ing edg	je offse	ts are r	equired	1		
DNMX15 DNMX15	0404WF 0604WF	DNI	VX15040 VX15060	08WF 08WF	DNM2 DNM2	X150412 X150612	NF NF			-	F							Sta	o <mark>er edg</mark> ndard ir	je geor nsert ed	netry Ige line
X-direction	Z-directio	n X-direct	ion Z-	direction	X-directio	n Z-di	rection			- P							1				
0.24	0.02	0.14		0.01	0.11	(0.01				\backslash						1				
										1	$\langle \rangle$						$\langle \rangle$				
		Cutting	edge offs	ets (mm)								-		and the second s							
TNMX16	0404WF	TNA	MX16040	8WF	TNM	(160412)	VF													/	
X-direction	Z-directio	n X-direct	ion Z-	direction	X-directio	n Z-di	rection					1									
0.24	0.01	0.16		0.00	0.11	(0.00			For D 1	type an	d T typ	e inser	ts, proc	aram co	orrectio	ns				
		•								are rec	quired f	for up f	acing	1 3			→凵⋆	Z-directi	on cuttin	g edge o	ffsets
																-					
																		V			
DNMX150	4 type	Corner-R(rs)			Ramping	angle θ							··· /				`				
DNMX150	6 type	(mm)	0°	5°	10°	15°	20°	25°		j,				Z-diree	ction "						
Z-direction cu	utting	0.4	0.00	- 0.34	- 0.35	- 0.36	- 0.36	- 0.36				10		< cutting	g edge offse	ets	e			*****	/
Edgo offcots	(mm)	0.8	0.00	- 0.26	- 0.26	- 0.25	- 0.24	- 0.22				10	1	1				(\setminus)	·		
Luge offsets (()																1	r N	1		
Luge onsets	()	1.2	0.00	- 0.15	- 0.17	-0.16	- 0.15	- 0.15									-	<u>, </u>	۱ <u> </u>		
Luge onsets	()	1.2	0.00	- 0.15	-0.17	-0.16	-0.15	- 0.15								_	<u>_</u>	· _	\		
Lugeonsets	()	1.2 Corner-R(rε)	0.00	- 0.15	-0.17	- 0.16	-0.15	- 0.15			Up	facing ang	le θ					·			
7 direction of	utting	1.2 Corner-R(rε) (mm)	0.00	-0.15	-0.17	-0.16	-0.15	- 0.15	30°	35°	Up 40°	facing ang 45°	le θ 50°	55°	60°	65°	70°	75°	80°	85°	90°
Z-direction co	utting (mm)	1.2 Corner-R(rε) (mm) 0.4 0.8	0.00 0° 0.00	-0.15 5° -0.02 0.13	-0.17 10° -0.03 0.12	- 0.16 15° - 0.03 0.11	-0.15 20° -0.04	- 0.15 25° - 0.05	30° - 0.06	35° - 0.07	Up 40° - 0.08	facing ang 45° — 0.09 0.00	le θ 50° - 0.10	55° -0.11	60° -0.12	65° -0.10	70° -0.08	75° -0.06	80° -0.04 -0.01	85° -0.02	90° 0.00
Z-direction co Edge offsets (utting (mm)	1.2 Corner-R(rɛ) (mm) 0.4 0.8 1.2	0.00 0° 0.00 0.00 0.00	-0.15 5° -0.02 0.13 0.36	-0.17 10° -0.03 0.12 0.34	-0.16 15° -0.03 0.11 0.31	-0.15 20° -0.04 0.09 0.27	- 0.15 25° - 0.05 0.07 0.24	30° - 0.06 0.05 0.20	35° - 0.07 0.04 0.16	Up 40° - 0.08 0.02 0.13	facing ang 45° – 0.09 0.00 0.09	le θ 50° - 0.10 - 0.02 0.05	55° -0.11 -0.05 0.00	60° -0.12 -0.07 -0.04	65° -0.10 -0.06 -0.04	70° -0.08 -0.04 -0.03	75° -0.06 -0.02 -0.02	80° -0.04 -0.01	85° -0.02 -0.01	90° 0.00 0.00 0.00
Z-direction ci Edge offsets (utting (mm)	1.2 Corner-R(rɛ) (mm) 0.4 0.8 1.2	0.00 0° 0.00 0.00 0.00	-0.15 5° -0.02 0.13 0.36	-0.17 10° -0.03 0.12 0.34	-0.16 15° -0.03 0.11 0.31	-0.15 20° -0.04 0.09 0.27	- 0.15 25° - 0.05 0.07 0.24	30° - 0.06 0.05 0.20	35° - 0.07 0.04 0.16	Up 40° - 0.08 0.02 0.13	facing ang 45° – 0.09 0.00 0.09	le θ 50° - 0.10 - 0.02 0.05	55° - 0.11 - 0.05 0.00	60° - 0.12 - 0.07 - 0.04	65° -0.10 -0.06 -0.04	70° -0.08 -0.04 -0.03	75° -0.06 -0.02 -0.02	80° - 0.04 - 0.01 - 0.01	85° - 0.02 - 0.01 - 0.01	90° 0.00 0.00 0.00
Z-direction co Edge offsets (TNMX1604	utting (mm) 4 type	1.2 Corner-R(rɛ) (mm) 0.4 0.8 1.2 Corner-R(rɛ)	0.00 0° 0.00 0.00 0.00	-0.15 5° -0.02 0.13 0.36	- 0.17 10° - 0.03 0.12 0.34 Ramping	- 0.16 15° - 0.03 0.11 0.31 g angle θ	-0.15 20° -0.04 0.09 0.27	- 0.15 25° - 0.05 0.07 0.24	30° - 0.06 0.05 0.20	35° -0.07 0.04 0.16	Up 40° - 0.08 0.02 0.13	facing ang 45° – 0.09 0.00 0.09	le θ 50° - 0.10 - 0.02 0.05	55° -0.11 -0.05 0.00	60° -0.12 -0.07 -0.04	65° -0.10 -0.06 -0.04	70° -0.08 -0.04 -0.03	75° -0.06 -0.02 -0.02	80° - 0.04 - 0.01 - 0.01	85° -0.02 -0.01 -0.01	90° 0.00 0.00 0.00
Z-direction cc Edge offsets (TNMX1604	utting (mm) 4 type	1.2 Corner-R(rɛ) (mm) 0.4 0.8 1.2 Corner-R(rɛ) (mm)	0.00 0° 0.00 0.00 0.00	-0.15 5° -0.02 0.13 0.36	- 0.17 10° - 0.03 0.12 0.34 Ramping	- 0.16 15° - 0.03 0.11 0.31 g angle θ 15°	-0.15 20° -0.04 0.09 0.27	- 0.15 25° - 0.05 0.07 0.24 25°	30° - 0.06 0.05 0.20	35° - 0.07 0.04 0.16	Up 40° - 0.08 0.02 0.13	facing ang 45° – 0.09 0.00 0.09	le θ <u>50°</u> - 0.10 - 0.02 0.05	55° -0.11 -0.05 0.00	60° -0.12 -0.07 -0.04	65° -0.10 -0.06 -0.04	70° -0.08 -0.04 -0.03	75° -0.06 -0.02 -0.02	80° - 0.04 - 0.01 - 0.01	85° - 0.02 - 0.01 - 0.01	90° 0.00 0.00 0.00
Z-direction cc Edge offsets (TNMX1604 Z-direction cc	utting (mm) 4 type utting	1.2 Corner-R(rɛ) (mm) 0.4 0.8 1.2 Corner-R(rɛ) (mm) 0.4	0.00 0° 0.00 0.00 0.00 0° 0° 0.00	-0.15 5° -0.02 0.13 0.36 5°	-0.17 10° -0.03 0.12 0.34 10° Ramping 10°	- 0.16 15° - 0.03 0.11 0.31 g angle θ 15°	-0.15 20° -0.04 0.09 0.27 20°	-0.15 25° -0.05 0.07 0.24 25°	30° - 0.06 0.05 0.20	35° - 0.07 0.04 0.16	Up 40° - 0.08 0.02 0.13	facing ang 45° – 0.09 0.00 0.09	le θ 50° - 0.10 - 0.02 0.05	55° - 0.11 - 0.05 0.00	60° - 0.12 - 0.07 - 0.04	65° -0.10 -0.06 -0.04	70° - 0.08 - 0.04 - 0.03	75° -0.06 -0.02 -0.02	80° - 0.04 - 0.01 - 0.01	85° -0.02 -0.01 -0.01	90° 0.00 0.00 0.00
Z-direction ct Edge offsets (TNMX1604 Z-direction ct Edge offsets (utting (mm) 4 type utting (mm)	1.2 Corner-R(rɛ) (mm) 0.4 0.8 1.2 Corner-R(rɛ) (mm) 0.4 0.8	0.00 0° 0.00 0.00 0.00 0.00 0° 0.00 0.00	-0.15 5° -0.02 0.13 0.36 5°	-0.17 10° -0.03 0.12 0.34 Ramping 10°	- 0.16 15° - 0.03 0.11 0.31 g angle θ 15°	-0.15 20° -0.04 0.09 0.27 20°	-0.15 25° -0.05 0.07 0.24 25°	30° - 0.06 0.05 0.20	35° -0.07 0.04 0.16	Up 40° - 0.08 0.02 0.13	facing ang 45° – 0.09 0.00 0.09	le θ 50° - 0.10 - 0.02 0.05	55° - 0.11 - 0.05 0.00	60° - 0.12 - 0.07 - 0.04	65° -0.10 -0.06 -0.04	70° -0.08 -0.04 -0.03	75° -0.06 -0.02 -0.02	80° - 0.04 - 0.01 - 0.01	85° -0.02 -0.01 -0.01	90° 0.00 0.00 0.00
Z-direction co Edge offsets (TNMX1604 Z-direction co Edge offsets (utting (mm) 4 type utting (mm)	1.2 Corner-R(rε) (mm) 0.4 0.8 1.2 Corner-R(rε) (mm) 0.4 0.8 1.2	0.00 0° 0.00 0.00 0.00 0° 0.00 0.00 0.00 0.00	-0.15 5° -0.02 0.13 0.36 5°	-0.17 10° -0.03 0.12 0.34 Ramping 10°	- 0.16 15° - 0.03 0.11 0.31 g angle θ 15°	-0.15 20° -0.04 0.09 0.27 20°	-0.15 25° -0.05 0.07 0.24 25°	30° - 0.06 0.05 0.20	35° -0.07 0.04 0.16	Up 40° - 0.08 0.02 0.13	facing ang 45° - 0.09 0.00 0.09 0.09	le θ 50° - 0.10 - 0.02 0.05	55° - 0.11 - 0.05 0.00	60° - 0.12 - 0.07 - 0.04	65° -0.10 -0.06 -0.04	70° - 0.08 - 0.04 - 0.03	75° -0.06 -0.02 -0.02	80° -0.04 -0.01 -0.01	85° -0.02 -0.01 -0.01	90° 0.00 0.00 0.00
Z-direction co Edge offsets (TNMX1604 Z-direction co Edge offsets (utting (mm) 4 type utting (mm)	1.2 Corner-R(r£) (mm) 0.4 0.8 1.2 Corner-R(r£) (mm) 0.4 0.8 1.2 Corner-R(r£) Corner-R(r£)	0.00 0° 0.00 0.00 0.00 0° 0.00 0.00 0.00 0.00	-0.15 5° -0.02 0.13 0.36 5°	-0.17 10° -0.03 0.12 0.34 Ramping 10°	- 0.16 15° - 0.03 0.11 0.31 g angle θ 15°	-0.15 20° -0.04 0.09 0.27 20° 20°	-0.15 25° -0.05 0.07 0.24 25°	30° - 0.06 0.05 0.20 Do not	35° - 0.07 0.04 0.16	Up 40° - 0.08 0.02 0.13 1604 type ir Up	facing ang 45° - 0.09 0.00 0.09	le θ 50° - 0.10 - 0.02 0.05 nping le θ	55° -0.11 -0.05 0.00	60° -0.12 -0.07 -0.04	65° -0.10 -0.06 -0.04	70° -0.08 -0.04 -0.03	75° -0.06 -0.02 -0.02	80° - 0.04 - 0.01 - 0.01	85° -0.02 -0.01 -0.01	90° 0.00 0.00 0.00
Z-direction ct Edge offsets (TNMX1604 Z-direction ct Edge offsets (utting (mm) 4 type utting (mm)	1.2 Corner-R(r£) (mm) 0.4 0.8 1.2 Corner-R(r£) (mm) 0.4 0.8 1.2 Corner-R(r£) (mm)	0.00 0° 0.00 0.00 0.00 0° 0° 0.00 0.00 0.00 0.00 0.00	-0.15 5° -0.02 0.13 0.36 5° 5°	-0.17 10° -0.03 0.12 0.34 Rampine 10° 10°	- 0.16 15° - 0.03 0.11 0.31 g angle θ 15° 15°	-0.15 20° -0.04 0.09 0.27 20° 20°	-0.15 25° -0.05 0.07 0.24 25°	30° - 0.06 0.05 0.20 Do not	35° - 0.07 0.04 0.16	Up 40° - 0.08 0.02 0.13 1604 type ir Up 40°	facing ang 45° - 0.09 0.00 0.09	le θ 50° - 0.10 - 0.02 0.05 nping le θ 50°	55° -0.11 -0.05 0.00	60° -0.12 -0.07 -0.04	65° -0.10 -0.06 -0.04	70° -0.08 -0.04 -0.03	75° -0.06 -0.02 -0.02 75°	80° - 0.04 - 0.01 - 0.01 80°	85° - 0.02 - 0.01 - 0.01 85°	90° 0.00 0.00 0.00
Z-direction cc Edge offsets (TNMX1604 Z-direction cc Z-direction cc	utting (mm) 4 type utting (mm)	1.2 Corner-R(r£) (mm) 0.4 0.8 1.2 Corner-R(r£) (mm) 0.4 0.8 1.2 Corner-R(r£) (mm) 0.4	0.00 0° 0.00 0.00 0.00 0.00 0.00 0.00 0	-0.15 5° -0.02 0.13 0.36 5° 5° -0.06	-0.17 10° -0.03 0.12 0.34 Ramping 10° -0.05	- 0.16 15° - 0.03 0.11 0.31 g angle θ 15° - 15° - 0.05	-0.15 20° -0.04 0.09 0.27 20° 20° -0.06	-0.15 25° -0.05 0.07 0.24 25° -0.07	30° - 0.06 0.05 0.20 Do not	35° -0.07 0.04 0.16 use TNMX1 35° -0.08	Up 40° - 0.08 0.02 0.13	facing ang 45° - 0.09 0.00 0.09 *************************	le θ 50° - 0.10 - 0.02 0.05 le θ 50° - 0.11	55° -0.11 -0.05 0.00 55° -0.12	60° - 0.12 - 0.07 - 0.04 60° - 0.13	65° - 0.10 - 0.06 - 0.04	70° - 0.08 - 0.04 - 0.03 70° - 0.10	75° -0.06 -0.02 -0.02 -0.02	80° - 0.04 - 0.01 - 0.01 80° - 0.05	85° - 0.02 - 0.01 - 0.01 85° - 0.02	90° 0.00 0.00 0.00 0.00
Z-direction cc Edge offsets (TNMX1604 Z-direction cc Edge offsets (Z-direction cc Edge offsets (utting (mm) 4 type utting (mm) utting (mm)	1.2 Corner-R(r£) (mm) 0.4 0.8 1.2 Corner-R(r£) (mm) 0.4 0.8 1.2 Corner-R(r£) (mm) 0.4 0.8 1.2	0.00 0° 0.00 0.00 0.00 0.00 0.00 0.00 0	-0.15 5° -0.02 0.13 0.36 5° -0.06 0.11	-0.17 10° -0.03 0.12 0.34 Ramping 10° -0.05 0.11	-0.16 15° -0.03 0.11 0.31 15° 15° -0.05 0.10	-0.15 20° -0.04 0.09 0.27 20° 20° -0.06 0.08	-0.15 25° -0.05 0.07 0.24 25° -0.07 0.06	30° - 0.06 0.05 0.20 Do not 30° - 0.08 0.04	35° -0.07 0.04 0.16 use TNMX1 35° -0.08 0.02	Up 40° - 0.08 0.02 0.13 1604 type ir Up 40° - 0.09 0.00	facing ang 45° - 0.09 0.00 0.09 seert for ran facing ang 45° - 0.10 - 0.02	le θ 50° - 0.10 - 0.02 0.05 le θ 50° - 0.11 - 0.04	55° -0.11 -0.05 0.00 55° -0.12 -0.06	60° - 0.12 - 0.07 - 0.04 60° - 0.13 - 0.08	65° -0.10 -0.06 -0.04 65° -0.12 -0.08	70° - 0.08 - 0.04 - 0.03 70° - 0.10 - 0.06	75° -0.06 -0.02 -0.02 -0.02	80° - 0.04 - 0.01 - 0.01 80° - 0.05 - 0.02	85° - 0.02 - 0.01 - 0.01 85° - 0.02 - 0.01	90° 0.00 0.00 0.00 0.00 90° 0.00 0.00

Applicable toolholders for negative wiper inserts

Insert installation

Insert	Cutting edge angle
CNMG1204 type	95°
WNMG0804 type	95°
DNMX1504/1506 type	93°
TNMX1604 type	91°

List of applicable toolholders

Insert	Application	Description	Applicable	
	External	PCLN		
	turning	DCLN		
CNMG1204 type		S-PCLN	Yes	
	Boring	A-DCLN		
		HA-PCLN12		
		PWLN		
	External	DWLN		
WAIMCORDA	turning	WWLN	Vee	
www.goode.cype		S-PWLN	res	
	Boring	A-DWLN		
		S-WWLN08-E		

List of applicable toolholders

Insert	Application	Description	Applicable				
		PDJN	Voc				
	External	DDJN	Tes				
	turning	PDHN	No				
		DDHN	INO				
DNMX1504/1506 type		S-PDUN15					
		A-DDUN	Voc				
	Boring	HA–PDUN15	Tes				
		S-PDZN15					
		S-PDQN15	No				
		PTGN					
						DTGN	Yes
	External	PTFN					
	turning	WTJN-N	See caution				
TNMX1604 type		WTKN-N	No				
		WTEN-N					
		A-DTFN	Yes				
	Boring	S-PTUN	Con coution				
		HA-PTFN16	See caution				

Wiper effect is limited

Available inserts (Negative)

WE chipbreaker

Shano	Description	Corner-	CERMET		MEGACOAT NANO CERMET		CVD coated carbide			
Sliabe	Description		TN610	TN620	PV710	PV720	CA510	CA515	CA525	CA530
	CNMG 120404WE 120408WE 120412WE	0.4 0.8 1.2	•	•	•	•	•	•	•	•
	WNMG 080404WE 080408WE 080412WE	0.4 0.8 1.2	•	•	•	•	•	•	•	•

• : Available

(mm)

Dimensions

Description	I.C.	Thickness	Hole
CNMG1204	12.70	4.76	5.16
DNMX1504	12 70	4.76	5 16
DNMX1506	12.70	6.35	5.10
TNMX1604	9.525	4.76	3.81
WNMG0804	12.70	4.76	5.16

Shane	Description		Corner-	CERMET		NANO CERMET		CVD	CVD coated carbide		
Зларе	De	Description		TN610	TN620	PV710	PV720	CA510	CA515	CA525	CA530
	CNMG	120404WF 120408WF	0.4 0.8	•	•	•	• •	•	••	••	••
	DNMX	150404WF 150408WF 150412WF	0.4 0.8 1.2	•	•	•	•	•	• • •	•	•••
	DNMX	150604WF 150608WF 150612WF	0.4 0.8 1.2	•	•	• • •	•••	•	••••	••••	•••
	TNMX	160404WF 160408WF 160412WF	0.4 0.8 1.2	•	•	•	•••	•	•	••••	•••
	WNMG	080404WF 080408WF	0.4 0.8	•	•	•	•	•	•	•	•

MEGACOAT

Т

• : Available

Recommended cutting conditions

WE chipbreaker

		Min Recommendation - Max.					
Workpiece	Insert grade	Cutting speed Vc (m/min)	ap (mm)	f (mm/rev)			
	TN610	120 - 220 - 340					
	TN620	100 - 200 - 300					
	PV710	130 - 280 - 360					
Carbon steel	PV720	130 - 250 - 340		0.2 0.45 0.7			
Alloy steel	CA510	190 - 280 - 360	0.5 - 0.7 - 5.0	0.2 - 0.43 - 0.7			
	CA515	160 - 260 - 340					
	CA525	150 - 240 - 320					
	CA530	130 - 200 - 270					

WF chipbreaker

WF chipbreaker

		Min Recommendation - Max.					
Workpiece	Insert grade	Cutting speed Vc (m/min)	ap (mm)	f (mm/rev)			
	TN610	120 - 220 - 340					
	TN620 100 - 200 - 300	100 - 200 - 300					
	PV710	130 - 280 - 360					
Carbon steel	PV720	130 - 250 - 340	01.05.10	01 02 05			
Alloy steel	CA510	190 - 280 - 360	0.1-0.5-1.0	0.1 - 0.3 - 0.5			
	CA515	160 - 260 - 340					
	CA525	150 - 240 - 320					
	CA530	130 - 200 - 270]				

Positive wiper insert

WPchipbreaker

- Excellent surface finish and smooth chip control during high feed machining
- High quality surface finish with no galling
- High machining accuracy with low cutting forces

