

MECHT

New helical end mill design added to the MECH product line

Unique design for stable titanium alloy milling

Insert size combination for increased stability Special holder design for increased reliability Excellent chip evacuation

Longer tool Life with low-resistance JS chipbreaker and tough PVD coating technology

Helical end mill for titanium alloy machining

MECHT

Insert size combination improves roughing capabilities Maintains stable machining and long tool life

1

Developed to reduce chattering and chip recutting issues


Unique insert combination

The larger bottom inserts are positioned to handle larger cutting forces (excluding ø32)

Stable machining with improved fracture resistance

New design for higher reliability

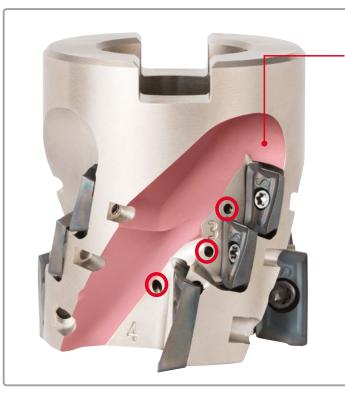
Bottom inserts are held in place by double-faced contacts

Holding surface 1

Wide holding surface

Holding Surface 2

Additional hold in the axial direction


Bore dia.

Larger bore diameter improves fastening power and reduces chattering \emptyset 50 mm cutter with a \emptyset 27 mm bore (conventional bore: \emptyset 22 mm)

Toolholder hardness Hardened 15% more than conventional holders

Toolholder spec

Custom ordering available Custom number of inserts and stages

Excellent chip evacuation

New flute design

Large, smooth flutes prevent chip clogging

MECHT (ø 50-4T 3 stages)

Conventional (ø 50-4T 4 stages)

Large flute

Smooth design

All inserts have coolant holes

Optimized hole diameter controls flow amount and pressure

Smooth chip evacuation as well as superior cooling of the cutting edge

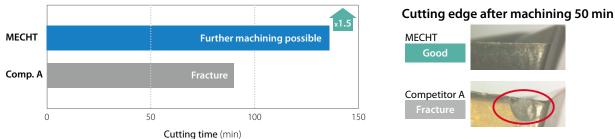
Chips example

Longer tool life with low-resistance JS chipbreaker and tough PVD coating

Low cutting force

JS chipbreaker

Heat at the cutting edge is suppressed due to sharp cutting performance Long tool life **Greater toughness**


PR1535

Fracture resistant with a tough substrate and high heat-resistant MEGACOAT NANO coating technology

Tool life comparison (internal evaluation)

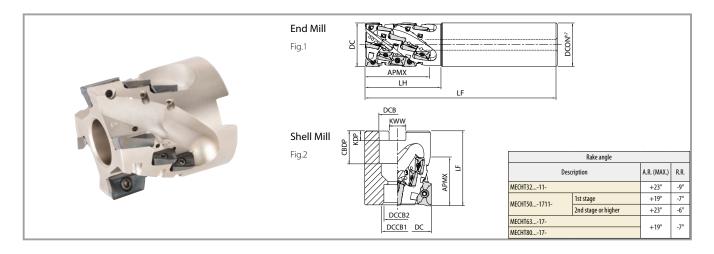
MECHT showed good cutting edge condition, and tool life was 50% longer than competitor B.

Cutting conditions: Vc = 40 m/min, ap × ae = 43 × 20 mm, fz = 0.12 mm/t , ø50 (5 Flutes), wet (external and internal coolant), workpiece: Ti6Al4V Machine: BT50

Slotting titanium alloy (internal evaluation)

ap = 20 mm (0.4xDC)

Stable machining without chip clogging or chattering



Cutting conditions : Vc = 40 m/min, ap \times ae = 20 \times 50 mm (Slotting), fz = 0.08 mm/t ø50 (5 Flutes), wet (external and internal coolant), workpiece: Ti6Al4V Machine: BT50

Case study Aerospace part Ti6Al4V $Vc = 55 \text{ m/min (n} = 350 \text{ min}^{-1})$ $ap \times ae = 24 \times 16 \text{ mm}$ $\dot{fz} = 0.09 \text{ mm/t (Vf} = 126 \text{ mm/min)}$ Wet (Internal coolant) MECHT50R-1711-3-4T-M BDMT170408ER-JS PR1535 (first stage) BDMT11T308ER-JS PR1535 (second and third stage) Cutting efficiency Vf = 126 mm/min **MECHT** Vf = 84 mm/minComp. B MECHT showed good chip evacuation and stable machining even with increasing feed rate. Machining efficiency was 50% better than that of the competitor with equivalent tool life. User evaluation

Recommended cutting conditions

		Donah of			Recommended insert grade (Vc: m/min)
Workpiece	Applications	Depth of	cut (mm)	fz (mm/t)	MEGACOAT NANO
		ар	ae		PR1535
Titanium alloy	Shouldering	~Length of Cut (APMX)	~0.5DC	0.10 ~ 0.12 ~ 0.16	30 ~ 40 ~ 60
(Ti6Al4V)	Slotting	~0.5DC	1DC	0.05 ~ 0.07 ~ 0.09	30 ~ 40 ~ 50

Toolholder dimensions

End mill

												Spare	parts	Applicable inserts		
	Description	Availability	of flutes	stages	inserts		Dim	ensions (n	nm)		Shape	Clamp screw	Wrench			
	o cocupion	Avail	No. o	No. of	No. of	DC	DCON	LF	LH	APMX	Shape			1st stage	2nd stage or higher	
٨	MECHT 32-S32-11-5-4T	•	4	5	20	32	32	140	55	46	Fig.1	SB-2555TRG	DTM-8	BDMT11T3**	*1BDMT11T308**	

Shell mill

											Spare parts		Applicable inserts							
	Description		Availability No. of flutes		inserts		Dimensions (mm) Clamp screw								Wrench	Arbor bolt				
	Zesarpaon	Avail	No. of	No. of stages	No. of	DC	DCB	DCCB ₁	DCCB ₂	LF	CBDP	KDP	KWW	APMX	Sh		M		1st stage	2nd stage or higher
MECHT	50R-1711-3-4T-M	•	4	3	12		27	20	14	55	24	,	12.4	34		SB-2555TRG	DTM-8	HH12X40		*1 DDMT11T200**
	50R-1711-4-5T-M	•	5	4	20	50	27	20	14	65	24	′	12.4	43	F:- 3	SB-4070TRN	DTM-15	HH12X50	DDMT1704**	*1BDMT11T308**
MECHT	63R-17-4-5T-M	•	5	4	20	63	27	20	14	00	24	7	12.4	رم	Fig.2		DTM 15	HH12X65	BDMT1704**	*1BDMT170408**
	80R-17-4-6T-M	•	6	4	24	80	32	26	17	80	28	8	14.4	60		SB-4070TRN	DTM-15	HH16X65		

: Available

Applicable inserts

Sh	ape			Dim	nensions (n	nm)		An	gle	MEGACOAT NANO	
	nows right-hand		Description	W1	S	D1	L	RE	AS	AN	PR1535
	*	BDMT	11T302ER-JS					0.2			•
			11T304ER-JS	6.7	3.8	2.8	11.0	0.4	18°	13°	•
	(10°) AS		11T308ER-JS					0.8			•
120		BDMT	170404ER-JS	0.6	4.9	4.4	17.0	0.4	18°	13°	•
Low cutting force	AN		170408ER-JS	9.6	4.9	4.4	17.0	0.8	18-	13	•

General JT chipbreaker and notched insert (only if holder has an even number of inserts) can also be used. For more information, please contact your Kyocera sales representative. \\

: Available

^{*1.} Use inserts with corner R of 0.8 or less for the 2nd or higher stages Machining with coolant is recommended (Internal coolant pressure 1.5 MPa or higher)

Coat anti-seize compound (P-37) thinly on the taper and the thread of the clamp screw when mounting inserts